Extensions 1→N→G→Q→1 with N=C3xC22:C4 and Q=C2

Direct product G=NxQ with N=C3xC22:C4 and Q=C2
dρLabelID
C6xC22:C448C6xC2^2:C496,162

Semidirect products G=N:Q with N=C3xC22:C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC22:C4):1C2 = C23.6D6φ: C2/C1C2 ⊆ Out C3xC22:C4244(C3xC2^2:C4):1C296,13
(C3xC22:C4):2C2 = C3xC23:C4φ: C2/C1C2 ⊆ Out C3xC22:C4244(C3xC2^2:C4):2C296,49
(C3xC22:C4):3C2 = D6:D4φ: C2/C1C2 ⊆ Out C3xC22:C424(C3xC2^2:C4):3C296,89
(C3xC22:C4):4C2 = C23.21D6φ: C2/C1C2 ⊆ Out C3xC22:C448(C3xC2^2:C4):4C296,93
(C3xC22:C4):5C2 = C23.9D6φ: C2/C1C2 ⊆ Out C3xC22:C448(C3xC2^2:C4):5C296,90
(C3xC22:C4):6C2 = Dic3:D4φ: C2/C1C2 ⊆ Out C3xC22:C448(C3xC2^2:C4):6C296,91
(C3xC22:C4):7C2 = C23.11D6φ: C2/C1C2 ⊆ Out C3xC22:C448(C3xC2^2:C4):7C296,92
(C3xC22:C4):8C2 = S3xC22:C4φ: C2/C1C2 ⊆ Out C3xC22:C424(C3xC2^2:C4):8C296,87
(C3xC22:C4):9C2 = Dic3:4D4φ: C2/C1C2 ⊆ Out C3xC22:C448(C3xC2^2:C4):9C296,88
(C3xC22:C4):10C2 = C3xC22wrC2φ: C2/C1C2 ⊆ Out C3xC22:C424(C3xC2^2:C4):10C296,167
(C3xC22:C4):11C2 = C3xC4:D4φ: C2/C1C2 ⊆ Out C3xC22:C448(C3xC2^2:C4):11C296,168
(C3xC22:C4):12C2 = C3xC22.D4φ: C2/C1C2 ⊆ Out C3xC22:C448(C3xC2^2:C4):12C296,170
(C3xC22:C4):13C2 = C3xC4.4D4φ: C2/C1C2 ⊆ Out C3xC22:C448(C3xC2^2:C4):13C296,171
(C3xC22:C4):14C2 = D4xC12φ: trivial image48(C3xC2^2:C4):14C296,165

Non-split extensions G=N.Q with N=C3xC22:C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC22:C4).1C2 = Dic3.D4φ: C2/C1C2 ⊆ Out C3xC22:C448(C3xC2^2:C4).1C296,85
(C3xC22:C4).2C2 = C23.8D6φ: C2/C1C2 ⊆ Out C3xC22:C448(C3xC2^2:C4).2C296,86
(C3xC22:C4).3C2 = C23.16D6φ: C2/C1C2 ⊆ Out C3xC22:C448(C3xC2^2:C4).3C296,84
(C3xC22:C4).4C2 = C3xC22:Q8φ: C2/C1C2 ⊆ Out C3xC22:C448(C3xC2^2:C4).4C296,169
(C3xC22:C4).5C2 = C3xC42:2C2φ: C2/C1C2 ⊆ Out C3xC22:C448(C3xC2^2:C4).5C296,173
(C3xC22:C4).6C2 = C3xC42:C2φ: trivial image48(C3xC2^2:C4).6C296,164

׿
x
:
Z
F
o
wr
Q
<